
Taking a serverless-first approach
with AWS

Building software
in the cloud

“What does the future look like? All the code you ever write is
business logic,” Amazon CTO Werner Vogels pronounced a
few years ago at AWS re:Invent.

Vogels was talking about serverless — a cloud computing execution model and
architectural style in which the cloud provider takes care of provisioning,
scaling and managing server resources for customers, as a service. In this
model, all that users have to do is write the business logic.

Serverless is a form of outsourcing where the computing resources needed to
run an application — runtimes, databases, message brokers, etc. — are fully
commoditized and, more importantly, unit priced. In contrast to more traditional
infrastructure-as-a-service (IaaS) offerings, serverless technology usually covers
various levels in the managed infrastructure stack (Figure 1).

Figure 1. Differences in ownership and responsibilities between IaaS and serverless

2

Application

Runtime

Virtualization

OS

Hardware

Infrastructure as a service Serverless

Application

Runtime

Virtualization

OS

Hardware

User managed Cloud managed

Building software in the cloud:
Taking a serverless-first approach with AWS

3

Cloud is an asset — code becomes a liability

Here’s a financial analogy to help explain a serverless approach: The cloud is an
asset, and the code becomes a liability. Once you open an account with any cloud
provider, you have access to a full catalog of services, and providers will continue
to add to it. It will cost you nothing to grow your set of functionalities. Your cloud
subscription costs only kick in when you start writing and executing your apps. So,
code in a serverless environment is not just technical debt: It’s debt, pure and plain.

Cloud providers such as AWS (Amazon Web Services), Google Cloud and Microsoft
Azure include an assortment of serverless innovations in their catalog of managed
services. These provide a vast set of compelling features that software engineers
can use to build modern applications in a more agile way, as the industrialization
and heavy lifting of the infrastructure are fully managed for them. This worry-free,
low-operations environment allows them to focus on building software that end
users will love to use.

It’s important to note that it is inaccurate to refer to this type of technology as
cloud-native. There is nothing new that makes serverless exclusive to the cloud. On
the contrary, it is fully based on age-old and widely accepted industry standards
such as HTTP, SFTP, DNS and MQTT. This means that the serverless offerings
provided by the largest platform players always have an equivalent off the cloud.

Serviceful vs. serverful, and the hidden costs of not
embracing cloud
Having said all that, we need to see the cloud platform as a system you can
program. Instead of thinking about the cloud as somebody else’s data center,
where engineers can spin up virtual machines and drop their workloads, think of
it this way: Cloud is a serviceful platform that enables developers to write minimal
code that glues up services to shape a working system.

This is a total mind-shift for many software engineers who are accustomed to
carrying the heavy baggage of frameworks and tools needed to wire things up
together in a serverful environment. Many software engineers are reluctant to
throw them away as they see them as a safeguard against vendor lock-in and, not
surprisingly, as a defensive mechanism in the event of platform portability.

But, as Gartner explains in this blog, the likelihood that applications will change
infrastructure providers through their lifespan is very low. Once deployed
on a provider, applications tend to stay there, so portability generally is not
a requirement. And there shouldn’t be a problem even if they do change
infrastructure providers — because serverless technologies are fully based on
industry standards (even open-sourced) that allow clean and easy interoperability
between providers.

There is nothing new
that makes serverless
exclusive to the cloud.
On the contrary, it is
fully based on age-old
and widely accepted
industry standards.
This means that the
serverless offerings
provided by the largest
platform players always
have an equivalent off
the cloud.

https://blogs.gartner.com/marco-meinardi/2020/09/04/adopting-kubernetes-application-portability-not-good-idea/

4

In addition, the frameworks and tools they traditionally relied upon can introduce
complexity in a serverless environment, and lead to issues that will end up being
more expensive to resolve than rewriting the original code for another platform.
By writing code in a non-standard fashion that does not leverage cloud services,
engineers take on overhead that they could have avoided if they had stayed with
the widely accepted (and standard) cloud platform defaults.

AWS serverless technology meets the mark
AWS offers an extensive catalog of serverless technologies across multiple
technical layers: NoSQL tables (Amazon DynamoDB), functions as a service
(AWS Lambda), queues and notifications (Amazon SQS/SNS) and container
management (AWS Fargate). AWS also includes new and more advanced
microservices management services (AWS Proton and AWS App Runner), as well
as state machines (AWS Step Functions).

The AWS ecosystem of serverless technologies enables a new and powerful
architectural style that industrializes the past — so that software engineers can
focus on building the future.

AWS cloud is completely based on industry technology standards. This means
that every service on its platform has an equivalent off the cloud that is based
on the same industry standards. This is very important because interoperability
is key when moving from a product-based economy to a service-based one such
as serverless — and that is possible only when these services are based on
standards. To lay out some examples:

•	 Storage created through the Amazon EFS service adheres to the NFS standard.

•	 Systems integrations handled by Amazon MQ follow the MQTT protocol.

•	 Service APIs created using the Amazon API Gateway can be consumed using HTTP
and Websockets, but also defined, imported and exported using OpenAPI v2.0
and OpenAPI v3.0.

•	 You can manage NoSQL databases on Amazon DocDB using an API that is fully
compatible with MongoDB.

All these services are exposed through HTTP interfaces that allow interactions-
based RESTful APIs. This standards-based approach helps in mitigating the risks
associated with a potential migration off AWS. Later in the following section, we
cover this very important topic in detail.

The AWS ecosystem of
serverless technologies
enables a new and
powerful architectural
style that industrializes
the past — so that
software engineers can
focus on building the
future. AWS cloud is
completely based on
industry technology
standards.

5

Serverless-first software engineering
As DXC Technology’s software organization transitions toward SaaS, the portfolio
management team will run a bimodal agenda by which they can build the new
while they tackle the old, which is typically still the main source of revenue. This
is indeed an interesting environment full of risks and unknowns that are not
far from the challenges presented to other engineering companies dealing with
shipping products at different stages of maturity.

Despite the obvious differences, this is the case with SpaceX. As an example, the
space manufacturer needs to be able to send stable payloads to space with their
cargo spacecraft Dragon, so they need to focus on stability, quality and reducing
deviation. At the same time, they are experimenting with reusable Falcon rockets,
so they welcome failure in non-critical parts. And finally, they are fully running
iterative and incremental experiments with Starship, carrying out an agile
manufacturing style that is focused on embracing change and reducing its cost.
This idea is summarized in Figure 2.

Figure 2. Different methodologies and competences for different goals
(Source: Simon Wardley)

Many technology organizations are transitioning toward SaaS. These organizations
have to deal with the challenges of building software that fully embraces and
leverages the benefits of serverless technologies but can also be deployed on-
premises for customers not yet prepared to move their data and workloads to the
public cloud.

That’s the case here at DXC. As a SaaS provider, we own the cost of software in its
totality, so the requirements push us naturally to have a default implementation
on the cloud. This is because, as noted earlier, it is preferable to write the code for
another platform than to use unnecessary frameworks and abstraction layers that
put a brake on innovation and also introduce management overheads.

What is the solution, then? We are going to look at this from an evolutionary
architecture point of view, using a technique known as hexagonal architectures.

https://blog.gardeviance.org/2014/05/it-all-gone-bit-wardley-here.html

6

Developing evolutionary architecture with AWS Lambda
Hexagonal architectures provide a pattern that helps in building loosely coupled
software components that can be easily integrated with other components by
means of some constructs called ports and adapters (Figure 3).

What this technique proposes is based on the principles of interface-oriented
programming:

•	 Developers need to isolate the business logic into modules that communicate via
domain-specific functional interfaces.

•	 The code that accesses the cloud services via their APIs or SDKs is implemented
behind those interfaces.

•	 If the application is moved to another cloud platform, the interface needs to be
reprogrammed to access the new cloud services using their APIs or SDKs.

With this pattern, software engineers can effectively isolate their business logic
from the underlying platform implementation details, whether it be a cloud
platform or an on-premises system. This way, if the application needs to be ported
between platforms, the changes in the code are very localized for the developers in
the following elements:

•	 Input adapters to massage and process the event payloads received by the
component

•	 Output adapters for interacting with the underlying cloud services via their APIs
or SDKs

Figure 3. Visual representation of the components in hexagonal architectures

Cloud-native
service

Client
request

ADAPTERS

PORTS

DOMAIN

7

Let’s see how this works using the example of a real DXC microservice built for
DXC Assure Digital Platform, our digitally enabled, end-to-end SaaS offering for
the insurance market. Within this offering, the events management service is
a core service from the DXC Assure Digital Platform that offers topic creation,
topic subscription and event submission functionalities, through a REST API
as an asynchronous integration mechanism between the different insurance
microservices that run on the platform.

In this case, the AWS services selected to implement the microservice component
are Amazon API Gateway for the API exposure of the microservice, AWS Lambda to
execute the main business logic and Amazon DynamoDB for the storage of events
and subscriptions (Figure 4).

Figure 4. Hexagonal architecture components mapped to AWS services

Amazon
DynamoDB

Amazon API
Gateway

ADAPTERS

PORTS

DOMAIN

AWS Lambda

8

Figure 6. Domain-specific service logic
(Code contributor: Enrique Riesgo)

2.		The custom handler function (don’t mistake this with the main Lambda handler)
implements all the necessary REST semantics for returning a valid API response
to the client, with the appropriate HTTP status code, headers and body (Figure 6).
In order to generate this response, the handler needs to access some data from
the database; it does so by interacting with an interface function that abstracts
the cloud database infrastructure details to the handler.

In a nutshell, the following points describe in detail our design approach to
implementing the events management service in DXC Assure using hexagonal
architectures:

1.		The first thing we need to do is process the API path by parsing the API Gateway
object in order to extract the REST resource being accessed and matching it
against a predefined map of available interactions (Figure 5). The result of
this matching will give us the name of a handler function that implements the
business logic necessary for that particular resource interaction.

Figure 5. Adapter implementation in an AWS Lambda function handler
(Code contributor: Enrique Riesgo)

Serverless technologies
are fully based on
industry standards
(even open-sourced)
that allow clean and
easy interoperability
between providers.

9

As mentioned earlier, in the unlikely event of an infrastructure or cloud platform
migration, the changes to the event service API are very localized in two parts:

•	 The input adapter, by updating the way we process the API paths coming from
the API Gateway event object: There is an equivalent in another platform to this
event object, so we need to figure out what is the right format and content.

•	 The output adapter, by updating the provider that accesses the data in the
database through the proper SDK function: NoSQL databases are standard on
and off the cloud, so this is just a matter of using the proper method to read data
on another platform, something that is obviously very standard.

Figure 7. Implementation of the output adapter using AWS SDK
(Code contributor: Enrique Riesgo)

3.	Finally, the implementation of this function is responsible for accessing the
Amazon DynamoDB table for reading and processing the necessary data using
AWS SDK (Figure 7). This is where we are fully isolating access to the underlying
platform, thus leaving the business logic totally agnostic and loosely coupled from
these infrastructure implementation details.

Learn more at
dxc.com/insurance-software

Get the insights that matter.
dxc.com/optin

© 2022 DXC Technology Company. All rights reserved. DG_8627a-22 February 2022

About DXC Technology

DXC Technology (NYSE: DXC) helps global companies run their mission critical systems and

operations while modernizing IT, optimizing data architectures, and ensuring security and

scalability across public, private and hybrid clouds. The world’s largest companies and public

sector organizations trust DXC to deploy services across the Enterprise Technology Stack to

drive new levels of performance, competitiveness, and customer experience. Learn more

about how we deliver excellence for our customers and colleagues at DXC.com.

Conclusion
Companies need to maintain and improve their existing revenue streams while
building the innovations that will make them competitive in the future, i.e., building
the new while tackling the old.

There is a market trend to go multicloud or rely on container orchestration solutions
such as Kubernetes that allow one to run applications and port them between
different platforms. However, the management overhead introduced by these
frameworks is higher than coding concrete pieces of the software twice, in the
unlikely event of platform portability. That’s why DXC Assure Digital Platform has
opted for a serverless-first approach, fully embracing the cloud, using it as a system
that you can program, and benefiting from all innovations released by AWS that, at
the end of the day, are based on age-old standards.

Architectural styles such as hexagonal architectures help us in implementing this
strategy effectively so that software engineers can design their components in a way
that they are loosely coupled with the underlying platform. If DXC Assure software
had to be moved off the cloud, software engineers will have a clear pattern to
rewrite only small and localized parts of the code to integrate to the new platform
services. This is how DXC Assure software engineers can focus on building the
best software in the world without worrying about undifferentiated work such as
container management or defensive programming techniques — thereby providing
DXC a competitive advantage in the SaaS market.

http://www.dxc.com/insurance-software
https://dxc.com/us/en/opt-in
https://www.linkedin.com/company/dxctechnology/
https://twitter.com/dxctechnology
https://www.facebook.com/DXCTechnology/
http://www.dxc.com

